

Daily Tutorial Sheet-3	Level-1
------------------------	---------

31.(D)
$$\Delta S = 10.13 = 31.2 + 51.1 - 47.3 - S_{H_2O}$$

$$S_{H_2O} = 45.13 \text{ cal/k mole.}$$

32.(A)
$$\Delta G = 29.3 \times 10^3 - (2 \times 239.7 - 152.3 - 223) \times 298 = -1721.8$$
 Joule

33.(D)
$$\Delta U = 0$$
 [for isothermal process] $\Delta H = 0$

$$\therefore \qquad \text{PV} = constant \ \Delta S = nR \, ln \frac{V_2}{V_1}$$

 $\Delta S > 0$ for isothermal expansion

34.(B) Endothermic reaction
$$\Rightarrow \Delta H > 0$$

 $\Delta S > 0$ as gaseous moles are increasing

37.(B)
$$\Delta S = \frac{\left(\Delta H\right)_{\text{vap}}}{T_{\text{B,pt}}} \implies T = \frac{30000}{75} = 400 \,\text{K}$$

38.(ABD)
$$P_1V_1 = P_2V_2$$
 [for isothermal]

$$\Delta U = 0$$
 [for isothermal]

$$\Delta H = 0$$
 [for isothermal]

39.(A)
$$\Delta U = q + W$$

40.(D)
$$W = -P\Delta V = -nR\Delta T = -1 \times R \times 1 = -R$$

41.(B) For adiabatic reversible process;

$$PV^{\gamma} = K \qquad \Longrightarrow \qquad P_2 = P_1 \Bigg(\frac{V_1}{V_2}\Bigg)^{\gamma} \left(as \ V_2 > V_1\right)$$

 \therefore So final pressure will be more for diatomic gas (less γ)

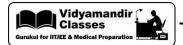
42.(C)
$$TV^{\gamma-1} = K$$

44.(A) (A) At constant volume,
$$w = 0$$

q < 0 (Cooling)

 $\Delta U < 0$ (Temperature is decreasing)

(B) $\Delta U = 0$ (isothermal)


$$w < 0$$
 (expansion)

$$q > 0$$
 ($\Delta U = q + w$)

(C)
$$q = 0$$
 (Adiabatic)

$$w = 0$$
 (Vacuum)

$$\Delta U = 0$$

 $\begin{array}{lll} \textbf{(D)} & w < 0 & & \text{(expansion)} \\ & q > 0 & & \text{(endothermic)} \end{array}$

 $\Delta H = \Delta U > 0$

45.(C) (A) q = 0 (B) $\Delta T = 0$ (C) $\Delta H = 0$ (D) $\Delta S = 0$

VMC | Chemistry 44 Thermodynamics